SectionDoc Documentation
Release 0.2

loannis Tziakos

Jun 13, 2017

Contents

5

Repository
Installation
Usage
Contents

Indices and tables

Python Module Index

31

33

SectionDoc Documentation, Release 0.2

The sectiondoc extension parses the function and class docstrings as they are retrieved by the autodoc extension
and renders the section blocks into sphinx friendly rst. The extension shares similarities with alternatives (such as
numpydoc) but aims at reflecting the original form of the docstring and support project specific customizations.

Key features of sectiondoc are:
* Do not change the order of sections.
» Allow sphinx directives between (and inside) section blocks.

* Custom rendering styles

Note: Sectiondoc should work with sphinx >= 0.4 that provides the aut odoc—-process—docstring hook.

Contents 1

SectionDoc Documentation, Release 0.2

2 Contents

CHAPTER 1

Repository

The sectiondoc extension lives at Github. You can clone the repository using:

$ git clone https://github.com/enthought/sectiondoc.git

SectionDoc Documentation, Release 0.2

4 Chapter 1. Repository

CHAPTER 2

Installation

Install sectiondoc from pypi using pip:

’$ pip install sectiondoc

Install the latest developing version using:

’$ pip install git+https://github.com/enthought/sectiondoc.git#egg=sectiondoc

SectionDoc Documentation, Release 0.2

6 Chapter 2. Installation

CHAPTER 3

Usage

Styles can be selected by referencing in conf . py the module they are defined:

extensions = [
I
'sectiondoc.styles.legacy’,

.

SectionDoc Documentation, Release 0.2

8 Chapter 3. Usage

CHAPTER 4

Contents

Docstring rendering

The are five different parts in the pipeline of sectiondoc docstring rendering.

Style

The rendering Style maps the objects types provided by autodoc to DocRender factory instances which are re-
sponsible for rendering the provided docstring.

The DocRender

The DocRender is responsible for doing the actual work. At initialization the class receives a dictionary mapping
section titles to a tuple containing a rendering function and (optionally) section item parsing and rendering classes. The
actual rendering starts by executing parse () to detect sections in the docstring. For each section that is discovered
the _render () is called with the name of the discovered section to further dispatch processing to the associated
section rendering function. If an associated function to the section does not exist the default is to use rubric ().

Section rendering function

The rendering fuctions will use the utility methods of the the DocRender instance to extract the section block. Depe-
dending on the implementation ext ract_paragraph () is called to return the paragraph for further processing or
extract_items () is called to return the list of 7tem instances. When a list of Item is collected the section the
rendering function will produce the updated rst docstring using the appropriate Renderer.

ltem

Item instances contain the term, classfier (s) and definition information of items in a section. Each
Item type knows how to parse a set of lines grouping and filtering the information ready to be rendered into sphinx

SectionDoc Documentation, Release 0.2

friendly rst.

Renderer

The Renderer is used by the section renderer functions to render a previously contructed Item into sphinx friently

rst.

Styles

SectionDoc comes with the following predefined rendering styles

Default

Default style is a stricter implementation of legacy_ where the definition item description is parsed using the

DefinitionItem which follows the rst definition more closely.

For class objects the default renders 5 types of sections:

Heading Description Parse as Max | Rendered as

Attributes Class attributes and their usage | Definitionltem | — Sphinx attributes

Arguments | function arguments and type Definitionltem | — Parameters field list

Parameters | function arguments and type Definitionltem | — Parameters field list

Methods Class methods with summary MethodItem - Table with links to the methods

Notes Useful notes paragraph 1 Note admonition
For functions the default renders six types of sections:

Heading Description Parse as Max | Rendered as

Arguments | function arguments and type | Definitionltem | — Parameters field list

Parameters | function arguments and type | Definitionltem | — Parameters field list

Returns Return value Definitionltem | — Unordered list

Raises Raised exceptions Definitionltem | — Unordered list

Yields Yield values Definitionltem | — Unordered list

Notes Useful notes paragraph 1 Note admonition

Note: All other sections are rendered using the . .

rubric::

directive by default.

layout rules

To be able to detect and render the sections properly the docstrings should follow the following rules:

* Between the section header and the first section item there can be at most only one empty line.

* The end of the section is designated by one of the following:

— The allowed number of items by the section has been parsed.

— Two consecutive empty lines are found.

— The line is not identified as a possible header of the section item.

10

Chapter 4. Contents

SectionDoc Documentation, Release 0.2

Hint: Please check the docstring of the specific definition item class to have more information regarding the

valid item header format.

Examples

Argument section

Arguments

inputa : str
The first argument holds the first input!.

This is the second paragraph.
inputb : float : int
The second argument is a float.

the default value is 0.

note:: this is an optional value.

arguments (inputa, inputb)
Parameters
* inputa (st r)— The first argument holds the first input!.

This is the second paragraph.

* inputb (float or int)- The second argument is a float. the default value is 0.

Note: this is an optional value.

Attribute sections

Attributes

docstring : list
A list of strings (lines) that holds docstrings. The lines are
changed inplace.

index : int
The zero-based line number of the docstring that is currently
processed.

class Attributes

docstring =list
A list of strings (lines) that holds docstrings

index =int
The current zero-based line number of the docstring that is proccessed.

4.2. Styles

11

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#int

SectionDoc Documentation, Release 0.2

Returns sections

Returns
myvalue : list
A list of important values.
But we need to say more things about it.

returns ()

Returns myvalue (/ist) — A list of important values. But we need to say more things about it.

Raises section

Raises

TypeError
This is the first paragraph of the description.
More description.

ValueError
Description of another case where errors are raised.

raises()
Raises
» TypeError — This is the first paragraph of the description. More description.

* ValueError — Description of another case where errors are raised.

Method section

extract_fields (indent='"', field_check=None)
Extract the fields from the docstring

get_field()
Get the field description.

get_next_paragraph ()
Get the next paragraph designated by an empty line.

class MyClass
Method Description
extract_fields (indent="", Extract the fields from the docstring
field_check=None)
get_field() Get the field description.
get_next_paragraph () Get the next paragraph designated by an
empty line.

12 Chapter 4. Contents

SectionDoc Documentation, Release 0.2

Empty strings are not changed.

Note: Empty strings are not changed.

Legacy

Previous versions of Sectiondoc (and the even older refactordoc package) supported a single style for rendering sec-
tions in function/method doc-strings. The old style is still supported in recent versions as the legacy style.

For class objects the legacy renders five types of sections:

Heading Description Parse as Max | Rendered as

Attributes Class attributes and their usage | OrDefinitionltem | — Sphinx attributes

Arguments | function arguments and type OrDefinitionltem | — Parameters field list
Parameters | function arguments and type OrDefinitionltem | — Parameters field list

Methods Class methods with summary MethodItem - Table with links to the methods
Notes Useful notes paragraph 1 Note admonition

For functions the default renders six types of sections:

Heading Description Parse as Max | Rendered as
Arguments | function arguments and type | OrDefinitionltem | — Parameters field list
Parameters | function arguments and type | OrDefinitionltem | — Parameters field list
Returns Return value OrDefinitionltem | — Unordered list
Raises Raised exceptions OrDefinitionltem | — Unordered list
Yields Yield values OrDefinitionltem | — Unordered list
Notes Useful notes paragraph 1 Note admonition

Note: All other sections are rendered using the . .

rubric: : directive by default.

layout rules

To be able to detect and render the sections properly the docstrings should follow the following rules:

» Between the section header and the first section item there can be at most only one empty line.

* The end of the section is designated by one of the following:

— The allowed number of items by the section has been parsed.

— Two consecutive empty lines are found.

— The line is not identified as a possible header of the section item.

Hint: Please check the docstring of the specific definition item class to have more information regarding the
valid item header format.

4.2. Styles

13

SectionDoc Documentation, Release 0.2

Examples

Argument section

Arguments

inputa : str
The first argument holds the first input!.

This is the second paragraph.
inputb : float or int
The second argument is a float.

the default value is 0.

note:: this is an optional value.

arguments (inputa, inputb)
Parameters
* inputa (str) - The first argument holds the first input!.
This is the second paragraph.

* inputb (float or int)-The second argument is a float. the default value is 0.

Note: this is an optional value.

Attribute sections

Attributes

docstring : list
A list of strings (lines) that holds docstrings. The lines are
changed inplace.

index : int
The zero-based line number of the docstring that is currently
processed.

class Attributes

docstring = list
A list of strings (lines) that holds docstrings

index =int
The current zero-based line number of the docstring that is proccessed.

Returns sections

14 Chapter 4. Contents

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#int

SectionDoc Documentation, Release 0.2

myvalue : list
A list of important values.
But we need to say more things about it.

returns ()

Returns myvalue (/ist) — A list of important values. But we need to say more things about it.

Raises section

TypeError
This is the first paragraph of the description.
More description.

ValueError
Description of another case where errors are raised.

raises ()
Raises
* TypeError — This is the first paragraph of the description. More description.

* ValueError — Description of another case where errors are raised.

Method section

Methods

extract_fields (indent='"', field_check=None)
Extract the fields from the docstring

get_field()
Get the field description.

get_next_paragraph ()
Get the next paragraph designated by an empty line.

class MyClass
Method Description
extract_fields (indent="'", Extract the fields from the docstring
field_check=None)
get_field() Get the field description.
get_next_paragraph () Get the next paragraph designated by an
empty line.

4.2. Styles 15

SectionDoc Documentation, Release 0.2

Empty strings are not changed.

Note: Empty strings are not changed.

Note:

* The default rendering style is currently default

Extending

Custom styles can be created by instanciating a St yle to map a DocRender factory for each type of object rendered
by autodoc. For example adding the following functions in you conf.py defines a rendering style for functions and
methods:

def function_section(lines):
return DocRender (

lines,

sections={
'"Returns': (item_list, ListItem, OrDefinitionItem),
'Arguments': (arguments, Argument, OrDefinitionItem),
'Parameters': (arguments, Argument, OrDefinitionItem),
'"Raises': (item_1list, ListItem, OrDefinitionItem),
'Yields': (item_list, ListItem, OrDefinitionItem),
'Notes': (notes_paragraph, None, None)})

def setup (app):
style = Style({
'function': function_section,
'method': function_section})
app.setup_extension ('sphinx.ext.autodoc')
app.connect ('autodoc-process—docstring', style.render_docstring)

Specifically the Style instance will map the function and method docstrings to the dostring rendering
funtion function_section. The DocRender will then detect the sections Returns, Arguments,
Parameters, Raises, Yields, Notes andusethe mapped combination of section rendering function, Item
description and item rendering type to render the detected section in-place.

The rendering styles can be further extented by implemeting new Item, Renderer instances or section rendering func-
tions.

Library Reference

The extension is separated into three main parts.

16 Chapter 4. Contents

SectionDoc Documentation, Release 0.2

Styles

class sectiondoc.styles.DocRender (lines, sections=None)
Docstring rendering class.

The class’ main purpose is to parse the docstring and find the sections that need to be refactored. The operation
take place in two stages:

*The class is instanciated with the appropriate section renderers
*The parse method is called to parse and render the sections inplace.

docstring = list
A list of strings (lines) that holds docstrings. The lines are changed inplace.

index =int
The zero-based line number of the docstring that is currently processed.

sections = dict
The sections that will be detected and rendered. The dictionary maps the section headers for detection to a
tuple containing the section rendering function and optional values for the item renderer and parser.

Parameters
* lines (1ist)— The docstring as a list of strings where to render the sections

* sections (dict)— The sections that will be detected and rendered. The dictionary maps
the section headers for detection to a tuple containing the section rendering function and
optional values for the item renderer and parser. If on section rendering information is pro-
vided the default behaviour of the class is to render every section using the rubric rendering
function.

bookmark ()
append the current index to the end of the list of bookmarks.

extract_items (item_type=None)
Extract the section items from a docstring.

Parse the items in the description of a section into items of the provided item type. The method starts at
the current line index position and checks if in the next two lines contain a valid item of the desired type.
If successful, the lines that belong to the item description block (i.e. item header + item body) are popped
out from the docstring and passed to the item_type.parser class method to get a new instance of
item_type.

The process is repeated until there are no compatible item_type items found in the section or we run
out of docstring lines, The collected item instances are returned

The exit conditions allow for two valid section item layouts:

1.No lines between items:

<headerl>
<descriptionl>

<more description>
<header2>
<description2>

2.0ne line between items:

4.4. Library Reference 17

https://docs.python.org/2/library/stdtypes.html#dict

SectionDoc Documentation, Release 0.2

<headerl>
<descriptionl>

<more description>

<header2>
<description2>

Parameters item_ type (Item)— An Item type or a subclass. This argument is used to check
if a line in the docstring is a valid item header and to parse the individual list items in the
section. AnyItem will be used by default.

Returns items (/ist) — List of the collected item instances of Ttem type.

get_next_block ()
Get the next item block from the docstring.

The method reads the next item block in the docstring. The first line is assumed to be the Item header and
the following lines to belong to the definition body:

<header line>
<definition>

The end of the field is designated by a line with the same indent as the field header or two empty lines in
sequence.

get_next_paragraph ()
Get the next paragraph designated by an empty line.

goto_bookmark (bookmark_index=-1)
Move to bookmark.

Move the current index to the docstring line given by the self.bookmarks [bookmark_index] and
remove it from the bookmark list. Default value will pop the last entry.

Returns bookmark (int)

insert_and move (lines, index)
Insert lines and move the current index to the end.

insert_1lines (lines, index)
Insert lines in the docstring.

Parameters
e lines (1ist)— The list of lines to insert

e index (int) - Index to start the insertion

is_section()
Check if the current line defines a section.

parse ()
Parse the docstring for sections.
The docstring is parsed for sections. If a section is found then the corresponding section rendering method
is called.

peek (ahead=0)
Peek ahead a number of lines

18 Chapter 4. Contents

https://docs.python.org/2/library/functions.html#int

SectionDoc Documentation, Release 0.2

The function retrieves the line that is ahead of the current index. If the index is at the end of the list then it
returns an empty string.

Parameters ahead (int)— The number of lines to look ahead.

pop (index=None)
Pop a line from the dostrings.

read ()
Return the next line and advance the index.

remove_if empty (index=None)
Remove the line from the docstring if it is empty.

remove_lines (index, count=1)
Removes the lines from the docstring

seek_to_next_non_empty line ()
Goto the next non_empty line.

docstring
Get the docstring lines.

eod
End of docstring.

Sections

sectiondoc.sections.attributes (doc, header, renderer=<class ‘section-
doc.renderers.attribute.Attribute’>, item_class=<class ‘section-

doc.items.definition_item.Definitionltem’>)
Render the attributes section to sphinx friendly format.

Parameters
* doc (DocRender) — The docstring container.
* header (string) - This parameter is ignored in this method.
e renderer (Renderer) — A renderer instance to render the items.
* item_class (type) — The item parser class to use. Default is orDefinitionItem.

sectiondoc.sections.notes_paragraph (doc, header, renderer=None, item_class=None)
Render the note section to use the rst . . note directive.

The section is expected to be given as a paragraph.

sectiondoc.sections.methods_table (doc, header, renderer=<class ‘section-
doc.renderers.method.Method’ >, item_class=<class

‘sectiondoc.items.method_item.MethodlItem’>)
Render the methods section to sphinx friendly table format.

sectiondoc.sections.rubric (doc, header, renderer=None, item_class=None)
Refactor a header section using the rubric directive.

The method supports refactoring of single word headers, two word headers and headers that include a backslash

[EXE]

Parameters header (st ring)— The header string to use with the rubric directive.

4.4. Library Reference 19

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/string.html#module-string
https://docs.python.org/2/library/functions.html#type
https://docs.python.org/2/library/string.html#module-string

SectionDoc Documentation, Release 0.2

sectiondoc.sections.arguments (doc, header, renderer=<class ‘section-

doc.renderers.argument.Argument’>, item_class=<class ‘sec-

tiondoc.items.definition_item. Definitionltem’>)
Render the argument section to sphinx friendly format.

Parameters
* doc (DocRender) — The docstring container.
* header (string) - This parameter is ignored in this method.
* renderer (Renderer) — A renderer instance to render the items.

* item_class (type) — The item parser class to use. Defaultis orDefinitionItem.

sectiondoc.sections.item list (doc, header, renderer=<class ‘section-

doc.renderers.list_item.Listltem’>, item_class=<class ‘sec-

tiondoc.items.or_definition_item.OrDefinitionltem’>)
Render the section to sphinx friendly item list.

Parameters
* doc (DocRender) — The docstring container.
* header (st r)— The header name that is used for the fields (i.e. : <header>:).
¢ renderer (Renderer) — A renderer instance to render the items.

* item_class (type) — The item parser class to use. Defaultis OrDefinitionItem.

ltems

class sectiondoc.items.OrDefinitionItem

A docstring definition section item.
In this section definition item there are two classifiers that are separated by or.

Syntax diagram:

e +
| term [" : " classifier [" or " classifier]] |
o +———t
| definition
| (body elements) + \
e e +
term = str

The term usually reflects the name of a parameter or an attribute.

classifiers =list
The classifiers of the definition. Commonly used to reflect the type of an argument or the signature of a
function. Only two classifiers are accepted.

definition = list
The list of strings that holds the description the definition item.

Note: An Or Definition item is based on the item of a section definition list as it defined in restructured text
(_http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#sections).

Create new instance of Item(term, classifiers, definition)

20

Chapter 4. Contents

https://docs.python.org/2/library/string.html#module-string
https://docs.python.org/2/library/functions.html#type
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#type

SectionDoc Documentation, Release 0.2

classmethod is_item (line)
Check if the line is describing a definition item.

The method is used to check that a line is following the expected format for the term and classifier at-
tributes.

The expected format is:

| term [" : " classifier [" or " classifier]] |

Subclasses can restrict or expand this format.

classmethod parse (lines)
Parse a definition item from a set of lines.

The class method parses the definition list item from the list of docstring lines and produces a Definition-
Item with the term, classifier and the definition.

Note: The global indention in the definition lines is striped

The term definition is assumed to be in one of the following formats:

term
Definition.

term
Definition, paragraph 1.

Definition, paragraph 2.

term : classifier
Definition.

term : classifier or classifier
Definition.

lines docstring lines of the definition without any empty lines before or after.

Returns definition (OrDefinitionltem)

class sectiondoc.items.DefinitionItem

A docstring definition section item.

In this section definition item, multiple classifiers can be provided as shown in the diagram below.

Syntax diagram:

o +

| term [" : " classifier]+«

o +———t
| definition |
| (body elements) + |
e +

4.4. Library Reference 21

SectionDoc Documentation, Release 0.2

term=str
The term usually reflects the name of a parameter or an attribute.

classifiers =list
The classifiers of the definition. Commonly used to reflect the type of an argument or the signature of a
function. Multiple classifiers are allowed separated by colons “* : “¢.

definition = list
The list of strings that holds the description the definition item.

Create new instance of Item(term, classifiers, definition)

classmethod is_item (line)
Check if the line is describing a definition item.

The method is used to check that a line is following the expected format for the term and classifier at-
tributes.

The expected format is:

| term [" : " classifier 1=

Subclasses can restrict or expand this format.

classmethod parse (lines)
Parse a definition item from a set of lines.

The class method parses the definition list item from the list of docstring lines and produces a Definition-
Item with the term, classifier and the definition.

Note: The global indention in the definition lines is striped

The term definition is assumed to be in one of the following formats:

term
Definition.

term
Definition, paragraph 1.

Definition, paragraph 2.

term : classifier
Definition.

term : classifier : classifier
Definition.

lines docstring lines of the definition without any empty lines before or after.
Returns definition (Definitionltem)

class sectiondoc.items.MethodItem
A MethodItem for method descriptions.

22 Chapter 4. Contents

SectionDoc Documentation, Release 0.2

term=str
The term usually reflects the name of the method.
classifiers =list
The classifiers reflect the signature (i.e args and kwargs) of the method.
definition =list
The list of strings that holds the description the method item.
Create new instance of Item(term, classifiers, definition)
classmethod is_item (/ine)

Check if the definition header is a function signature.

The expected header has the following format:

classmethod parse (lines)
Parse a method definition item from a set of lines.

Parse the method signature and definition from the list of docstring lines and produce a MethodItem where
the term is the method name and the classifier is arguments.

Note: The global indention in the definition lines is striped

The format of the method definition item is expected to be as follows:

| term " (" [classifier [, classifier]» 1 ")" |
o +———t

| definition
| (body elements) +

Parameters lines — docstring lines of the method definition item without any empty lines
before or after.

Returns definition (Methodltem)

class sectiondoc.items.AnyItem
A docstring definition section item.

In this section item the are not restrictions on the classifier’s section of the item header.

Syntax diagram:

n
| term [" " text] |
e +———t
| definition
| (body elements) + |
e +
term=str

The term usually reflects the name of a parameter or an attribute.

4.4. Library Reference 23

SectionDoc Documentation, Release 0.2

classifiers =list
The classifiers of the definition. Commonly used to reflect the type of an argument or the signature of a
function. Any text after the ‘ : * till the end of the line is consider a single classifier.

definition =list
The list of strings that holds the description the definition item.

Note: Anyltem is probably closer to numpydoc on describing a section item.

Create new instance of Item(term, classifiers, definition)

classmethod is_item (line)
Check if the line is describing a definition item.

The method is used to check that a line is following the expected format for the term and classifier at-
tributes.

The expected format is:

Subclasses can restrict or expand this format.

classmethod parse (lines)
Parse a definition item from a set of lines.

The class method parses the definition list item from the list of docstring lines and produces a Definition-
Item with the term, classifier and the definition.

Note: The global indention in the definition lines is striped.

The term definition is assumed to be in one of the following formats:

term
Definition.

term
Definition.

term
Definition, paragraph 1.

Definition, paragraph 2.

term: Definition, paragraph 1.

Definition, paragraph 2.

term : any text is valid here
Definition.

lines docstring lines of the definition without any empty lines before or after.

24

Chapter 4. Contents

SectionDoc Documentation, Release 0.2

Returns definition (Anyltem)
class sectiondoc.items.Item
A section item.
The Item class is responsible to check, parse a docstring item into a (term, classifiers, definition) tuple.

Format diagram:

e T T +

| header

s T e e +———t
| definition |
| (body elements)+ \
B T T R +

Depending only in the type of the list item the header is split into a term and one or more classifiers.

term=str
The term usually reflects the name of a parameter or an attribute.

classifiers =list
The classifier(s) of the term. Commonly used to reflect the type of an argument or the signature of a
function.

definition = list
The list of strings that holds the description of the definition item.

Create new instance of Item(term, classifiers, definition)

classmethod is_item (line)
Check if the line is describing an item.

The method is used to check that a line is following the expected format for the termand classifiers
attributes.

classmethod parse (lines)
Parse a definition item from a set of lines.

The class method parses the item from the list of docstring lines and produces a Item with the term,
classifier and the definition.

Note: The global indention in the definition lines is striped

Parameters lines — docstring lines of the definition without any empty lines before or after.
Returns item (/tem)
mode

Property (st ring), the operational mode of the item based on the available info. Possible values are
{'only_term', 'no_classifiers', 'no_definition', 'full'}.

Renderers

class sectiondoc.renderers.Method (item=None)
Render method items as a table row.

4.4. Library Reference 25

https://docs.python.org/2/library/string.html#module-string

SectionDoc Documentation, Release 0.2

to_rst (columns=(0, 0))
Outputs definition in rst as a line in a table.

Parameters columns (tuple) — The two item tuple of column widths for the :meth: role
column and the definition (i.e. summary) of the MethodItem

Note: The string attributes are clipped to the column width.

Example

>>> item = MethodItem('function', 'argl, arg2',
['"This is the best function ever.'])
>>> renderer = Method (item)
>>> renderer.to_rst (columns= (40, 20))
:meth: function <function(argl, arg2)>" This is the best fun

class sectiondoc.renderers.Argument (item=None)
Render an item as a sphinx parameter role.

to_rst ()
Render an item as an argument using the : param: role.

Example

>>> item = Item('indent', 'int',
['"The indent to use for the description block.',
T
'This is the second paragraph of the argument definition.'])
>>> renderer = Argument (item)
>>> renderer.to_rst ()
:param indent:
The indent to use for the description block.
This is the second paragraph of the argument definition.
:type indent: int

Note: There is no new line added at the last line of the to_rst () method.

class sectiondoc.renderers.Renderer (item=None)
An item renderer.

to_rst (**kwards)
Outputs the item in sphinx friendly rst.

The method renders the passed into a list of lines that follow the rst markup.

Subclasses need to override the method to provide their custom made behaviour. However the signature of
the method should hold only keyword arguments which always have default values.

Returns lines (/ist) — A list of string lines rendered in rst.

class sectiondoc.renderers.Attribute (item=None)
Render an Item instance using the sphinx attribute directive.

26 Chapter 4. Contents

https://docs.python.org/2/library/functions.html#tuple

SectionDoc Documentation, Release 0.2

to_rst ()
Return the attribute info using the attribute sphinx markup.

Examples

>>> item = Item('indent', 'int"',
['The indent to use for the description block.'])
>>> Attribute (item) .to_rst ()
attribute:: indent
rannotation: = “int’

The indent to use for the description block
>>>

>>> item = Item('indent', '',
['"The indent to use for the description block.'])
>>> Attribute (item) .to_rst ()
attribute:: indent

The indent to use for the description block
>>>

Note: An empty line is added at the end of the list of strings so that the results can be concatenated
directly and rendered properly by sphinx.

class sectiondoc.renderers.ListItem (ifem=None)
Rendered an item instance as an ordered/unordered list item.

to_rst (prefix=None)
Renders an item as items in an rst list.

Parameters prefix (st r) — The prefix to use. For example if the item is part of an unnum-
bered list then prefix="-".

Example

>>> item = Item('indent', 'int',
['"The indent to use for the description block.'])
>>> renderer = ListItem(item)
>>> renderer.to_rst (prefix="-")
— x*xindent*x (" int’) —-—
The indent to use for the description block.

>>> item = Item('indent', 'int"',
['"The indent to use for'
'the description block.'])

>>> renderer = ListItem(item)
>>> renderer.to_rst (prefix="-")
— **xindent*x (“int’) —--—-

The indent to use for
the description block.

4.4. Library Reference 27

https://docs.python.org/2/library/functions.html#str

SectionDoc Documentation, Release 0.2

Note: An empty line is added at the end of the list of strings so that the results can be concatenated
directly and rendered properly by sphinx.

class sectiondoc.renderers.TableRow (item=None)
Render an Item that represents a table line.

to_rst (columns=(0, 0, 0))
Outputs definition in rst as a line in a table.

Parameters columns (tuple)— The three item tuple of column widths for the term, classifiers
and definition fields of the TableLineltem. When the column width is O then the field is
ignored.

Note:

*The strings attributes are clipped to the column width.

Example

>>> item = Item('function(argl, arg2)', '',
['This is the best function ever.'])

>>> TableRow (item) .to_rst (columns= (22, 0, 20))

function(argl, arg2) This is the best fun

class sectiondoc.renderers.Definition (item=None)
Render an Item instance as a sphinx definition term

to_rst (**kwards)
Outputs the Item in sphinx friendly rst.

The method renders the definition into a list of lines that follow the rst markup of a sphinx definition
item:

<term>

(<classifier(s)>) ——
<definition>

Returns lines (/ist) — A list of string lines rendered in rst.

Example

>>> item = Item(
'lines', 'list',
['A list of string lines rendered in rst.'])

>>> renderer = Definition(item)
>>> renderer.to_rst
lines

*(list)» ——
A list of string lines rendered in rst.

28 Chapter 4. Contents

https://docs.python.org/2/library/functions.html#tuple

SectionDoc Documentation, Release 0.2

Note: An empty line is added at the end of the list of strings so that the results can be concatenated
directly and rendered properly by sphinx.

Authors

Ioannis Tziakos is the main developer and maintainer of the sectiondoc sphinx extension.

Historical notes:
The refactor_doc (original name of sectiondoc) extention started while working on the Enaml project with Chris
Colbert, Robert Kern, Corran Webster, Tim Diller, and David Wyde at Enthought.

Many people at Enthought have provided feedback, given suggestions and fixes.

Change Log

Version 0.5.0dev

* The DefinitionItem now follows the rst description
* Implement a new Anyltem definition.

* Support rendering styles (#13)

* Fix documentation built

e Add Parameters section for class docstrings (#22)
* Rename package to sectiondoc (#16)

* Fix support and tests on Python 2.6 (#8)

Version 0.3.0

23/05/2014
* Support for Python 2.6 to 3.4 (#3, #4)
e Tests are run on TravisCI for all supported Python versions on Linux (#4)

* A setup.py file has been added to allow installable releases (#5)

Version 0.2

31/01/2012
* First draft of the documentation and rename to refactordoc
* Removed depedancy to docscrape.py
* Refactordoc is now a valid sphinx extention

* Factor out boilerplate code from refactoring methods to class methods.

4.5. Authors 29

SectionDoc Documentation, Release 0.2

¢ Factored out DefinitionItem class.
* Better test coverage.

* Code and Docstring cleanup.

Early Versions

26/10/2011

An early copy of the refactor_doc* can be found in the enaml documentation source directory. The module is named
enamldoc and uses the Reader class that is in the docscrape.py file of the numpydoc package.

License

This software is OSI Certified Open Source Software. OSI Certified is a certification mark of the Open Source
Initiative.

Copyright (c) 2012-2015, Enthought, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

¢ Neither the name of Enthought, Inc. nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

30 Chapter 4. Contents

CHAPTER B

Indices and tables

* genindex
* modindex

e search

31

SectionDoc Documentation, Release 0.2

32 Chapter 5. Indices and tables

Python Module Index

S

sectiondoc.
sectiondoc.

sectiondoc

sectiondoc.

items, 20
renderers, 25

.sections, 19

styles, 17

33

SectionDoc Documentation, Release 0.2

34 Python Module Index

Index

A

Anyltem (class in sectiondoc.items), 23
Argument (class in sectiondoc.renderers), 26
arguments() (in module sectiondoc.sections), 19
Attribute (class in sectiondoc.renderers), 26
attributes() (in module sectiondoc.sections), 19

B

bookmark() (sectiondoc.styles.DocRender method), 17

C

classifiers (sectiondoc.items.Anyltem attribute), 23

classifiers (sectiondoc.items.Definitionltem attribute), 22

classifiers (sectiondoc.items.Item attribute), 25

classifiers (sectiondoc.items.MethodItem attribute), 23

classifiers (sectiondoc.items.OrDefinitionltem attribute),
20

D

Definition (class in sectiondoc.renderers), 28

definition (sectiondoc.items.Anyltem attribute), 24

definition (sectiondoc.items.Definitionltem attribute), 22

definition (sectiondoc.items.Item attribute), 25

definition (sectiondoc.items.MethodItem attribute), 23

definition (sectiondoc.items.OrDefinitionltem attribute),
20

DefinitionItem (class in sectiondoc.items), 21

DocRender (class in sectiondoc.styles), 17

docstring (sectiondoc.styles.DocRender attribute), 17, 19

E

eod (sectiondoc.styles.DocRender attribute), 19
extract_items() (sectiondoc.styles.DocRender method),
17

G

get_next_block() (sectiondoc.styles.DocRender method),
18

get_next_paragraph() (sectiondoc.styles.DocRender

method), 18
goto_bookmark() (sectiondoc.styles.DocRender method),
18

index (sectiondoc.styles.DocRender attribute), 17

insert_and_move() (sectiondoc.styles.DocRender
method), 18

insert_lines() (sectiondoc.styles.DocRender method), 18

is_item() (sectiondoc.items.Anyltem class method), 24

is_item() (sectiondoc.items.DefinitionItem class method),
22

is_item() (sectiondoc.items.Item class method), 25

is_item() (sectiondoc.items.MethodItem class method),
23

is_item() (sectiondoc.items.OrDefinitionltem
method), 20

is_section() (sectiondoc.styles.DocRender method), 18

Item (class in sectiondoc.items), 25

item_list() (in module sectiondoc.sections), 20

L

ListItem (class in sectiondoc.renderers), 27

M

Method (class in sectiondoc.renderers), 25
MethodlItem (class in sectiondoc.items), 22
methods_table() (in module sectiondoc.sections), 19
mode (sectiondoc.items.Item attribute), 25

N

notes_paragraph() (in module sectiondoc.sections), 19

O

OrDefinitionItem (class in sectiondoc.items), 20

P

parse() (sectiondoc.items.Anyltem class method), 24

class

35

SectionDoc Documentation, Release 0.2

parse() (sectiondoc.items.Definitionltem class method),
22

parse() (sectiondoc.items.Item class method), 25

parse() (sectiondoc.items.MethodItem class method), 23

parse() (sectiondoc.items.OrDefinitionltem class
method), 21

parse() (sectiondoc.styles.DocRender method), 18

peek() (sectiondoc.styles.DocRender method), 18

pop() (sectiondoc.styles.DocRender method), 19

R

read() (sectiondoc.styles.DocRender method), 19

remove_if_empty() (sectiondoc.styles.DocRender
method), 19

remove_lines() (sectiondoc.styles.DocRender method),
19

Renderer (class in sectiondoc.renderers), 26
rubric() (in module sectiondoc.sections), 19

S

sectiondoc.items (module), 20

sectiondoc.renderers (module), 25

sectiondoc.sections (module), 19

sectiondoc.styles (module), 17

sections (sectiondoc.styles.DocRender attribute), 17

seek_to_next_non_empty_line() (section-
doc.styles.DocRender method), 19

T

TableRow (class in sectiondoc.renderers), 28

term (sectiondoc.items.Anyltem attribute), 23

term (sectiondoc.items.DefinitionItem attribute), 21
term (sectiondoc.items.Item attribute), 25

term (sectiondoc.items.MethodItem attribute), 22
term (sectiondoc.items.OrDefinitionItem attribute), 20
to_rst() (sectiondoc.renderers.Argument method), 26
to_rst() (sectiondoc.renderers.Attribute method), 26
to_rst() (sectiondoc.renderers.Definition method), 28
to_rst() (sectiondoc.renderers.ListIltem method), 27
to_rst() (sectiondoc.renderers.Method method), 25
to_rst() (sectiondoc.renderers.Renderer method), 26
to_rst() (sectiondoc.renderers.TableRow method), 28

36

Index

	Repository
	Installation
	Usage
	Contents
	Indices and tables
	Python Module Index

