
RefactorDoc Documentation
Release 0.2

Ioannis Tziakos

February 10, 2016

Contents

1 Repository 3

2 Installation 5

3 Contents 7
3.1 Default refactoring . 7
3.2 Usage rules . 7
3.3 Examples . 8
3.4 Architecture . 10
3.5 Section components . 11
3.6 Building your own suite . 12
3.7 Adding sections . 12
3.8 Library Reference . 13
3.9 Authors . 22
3.10 Todos . 22
3.11 Change Log . 22
3.12 License . 23

4 Indices and tables 25

Python Module Index 27

i

ii

RefactorDoc Documentation, Release 0.2

[![Build Status](https://travis-ci.org/enthought/refactordoc.svg?branch=master)](https://travis-
ci.org/enthought/refactordoc) [![Coverage Status](https://img.shields.io/coveralls/enthought/refactordoc.svg)](https://coveralls.io/r/enthought/refactordoc?branch=master)

The RefactorDoc extension parses the function and class docstrings as they are retrieved by the autodoc extension
and refactors the section blocks into sphinx friendly rst. The extension shares similarities with alternatives (such as
numpydoc) but aims at reflecting the original form of the docstring.

Key aims of RefactorDoc are:

• Do not change the order of sections.

• Allow sphinx directives between (and inside) section blocks.

• Easier to debug (native support for debugging) and extend (future versions).

Contents 1

https://travis-ci.org/enthought/refactordoc.svg?branch=master){]}(https://travis-ci.org/enthought/refactordoc
https://travis-ci.org/enthought/refactordoc.svg?branch=master){]}(https://travis-ci.org/enthought/refactordoc
https://img.shields.io/coveralls/enthought/refactordoc.svg){]}(https://coveralls.io/r/enthought/refactordoc?branch=master

RefactorDoc Documentation, Release 0.2

2 Contents

CHAPTER 1

Repository

The RefactorDoc extension lives at Github. You can clone the repository using:

$ git clone https://github.com/enthought/refactordoc.git

3

RefactorDoc Documentation, Release 0.2

4 Chapter 1. Repository

CHAPTER 2

Installation

1. Install refactordoc from pypi using pip:

$ pip install reafactordoc

2. Add refactor-doc to the extensions variable of your sphinx conf.py:

extensions = [
...,
'refactordoc',
...,

]

5

RefactorDoc Documentation, Release 0.2

6 Chapter 2. Installation

CHAPTER 3

Contents

3.1 Default refactoring

The base implementation of RefactorDoc provides refactoring for class and function doc-strings. A number of known
(i.e. predefined) sections are processed by the ClassDoc and FunctionDoc classes and all unknown sections are re-
factored using the .. rubric:: directive by default.

For class objects the ClassDoc includes code to re-factor three types of sections.

Heading Description Item Max Rendered as
Methods Class methods with summary MethodItem – Table with links to the method
Attributes Class attributes and their usage Attribute – Sphinx attributes
Notes Useful notes paragraph 1 Note admonition

For function objects the FunctionDoc includes code to re-factor three types of sections.

Heading Description Item Max Rendered as
Arguments function arguments and type ArgumentItem – Parameters field list
Returns Return value ListItem – Unordered list
Raises Raised exceptions ListItem – Unordered list
Notes Useful notes paragraph 1 Note admonition

3.2 Usage rules

To be able to re-factor the sections properly the doc-strings should follow theses rules:

Rules

• Between the section header and the first section item there can be at most only one empty line.

• The end of the section is designated by one of the following:

– The allowed number of items by the section has been parsed.

– Two consecutive empty lines are found.

– The line is not identified as a possible header of the section item.

Hint: Please check the doc-string of the specific definition item class to have more information regarding
the valid item header format.

7

RefactorDoc Documentation, Release 0.2

3.3 Examples

3.3.1 Argument sections

Arguments

new_lines : list

The list of lines to insert

index : int
Index to start the insertion

"""

BaseDoc.insert_lines(lines, index)
Insert refactored lines

Parameters

• new_lines (list) – The list of lines to insert

• index (int) – Index to start the insertion

3.3.2 Method sections

Methods

_refactor_attributes(self, header):

Re-factor the attributes section to sphinx friendly format.

_refactor_methods(self, header):
Re-factor the methods section to sphinx friendly format.

_refactor_notes(self, header):
Re-factor the note section to use the rst ``.. note`` directive.

Note: The table that is created in this example does not have the links enabled because the methods are not rendered
by autodoc (the :no-members option is set).

class refactordoc.class_doc.ClassDoc(lines, headers=None)
Docstring refactoring for classes.

The class provides the following refactoring methods.

Method Description
_refactor_attributes(self,
header)

Refactor the attributes section to sphinx friendly format.

_refactor_methods(self, header) Refactor the methods section to sphinx friendly format.
_refactor_notes(self, header) Refactor the note section to use the rst .. note

directive.

8 Chapter 3. Contents

http://docs.python.org/library/functions.html#list
http://docs.python.org/library/functions.html#int

RefactorDoc Documentation, Release 0.2

Attribute sections

Attributes

docstring : list

A list of strings (lines) that holds doc-strings

index : int
The current zero-based line number of the doc-string that is currently
processed.

headers : dict
The sections that the class re-factors. Each entry in the
dictionary should have as key the name of the section in the
form that it appears in the doc-strings. The value should be
the postfix of the method, in the subclasses, that is
responsible for refactoring (e.g. {'Methods': 'method'}).

class refactordoc.base_doc.BaseDoc(lines, headers=None)
Base abstract docstring refactoring class.

The class’ main purpose is to parse the docstring and find the sections that need to be refactored. Subclasses
should provide the methods responsible for refactoring the sections.

docstring = list
A list of strings (lines) that holds docstrings

index = int
The current zero-based line number of the docstring that is currently processed.

headers = dict
The sections that the class will refactor. Each entry in the dictionary should have as key the name of the
section in the form that it appears in the docstrings. The value should be the postfix of the method, in the
subclasses, that is responsible for refactoring (e.g. {‘Methods’: ‘method’}).

BaseDoc also provides a number of methods that operate on the docstring to help with the refactoring. This is
necessary because the docstring has to change inplace and thus it is better to live the docstring manipulation to
the class methods instead of accessing the lines directly.

Returns sections

Returns

result : list

A new list of left striped strings.

refactordoc.line_functions.remove_indent(lines)
Remove all indentation from the lines.

Returns result (list) – A new list of left striped strings.

Raises section

Notes

3.3. Examples 9

RefactorDoc Documentation, Release 0.2

Notes

Empty strings are not changed.

refactordoc.line_functions.add_indent(lines, indent=4)
Add spaces to indent a list of lines.

Parameters

• lines (list) – The list of strings to indent.

• indent (int) – The number of spaces to add.

Returns lines (list) – The indented strings (lines).

Note: Empty strings are not changed.

3.4 Architecture

The are three different parts in the pipeline of refactordoc.

1. The autodoc event hook and object refactoring dispatch;

2. The docstring section detection and method dispatching and;

3. The second component parsing and refactor of the detected sections;

3.4.1 The entry function

The entry function setup is located in the __init__.py file. Through the setup function refactor doc is loading the
autodoc extention and hooks the refactor_docstring() function to the autodoc-process-docstring
event.

The refactor_docstring() function receives the list of lines that compose the dostrings and based on the
object initializes a new class instance to do the main work. The final item in the process is to execute the parse
method of the created class.

3.4.2 The refactoring class

The refactoring classes are responsible for doing the actual work. These classes are derived from the BaseDoc class.
After initialization refactoring takes place by executing the parse() method. The method looks for section headers
by parsing the lines of the docstring. For each section that is discovered the _refactor() method is called with the
name of the discovered section to dispatch processing to the associated refactoring method. The dispatcher constructs
the name of the refactoring function by looking up the headers dictionary for a key equal to the header string found.
If a key is found then the refactoring method name is composed from the prefix _header_ and the retrieved value.
If a key with the header name is not found then the default _refactor_header() is used.

3.4.3 The refactoring methods

Depending on the section the associated method parses and extracts the section definition block using the provided by
the BaseDoc class utility methods.

10 Chapter 3. Contents

http://docs.python.org/library/functions.html#list
http://docs.python.org/library/functions.html#int

RefactorDoc Documentation, Release 0.2

When the definition block is a paragraph the extract_paragraph() will return the paragraph for further pro-
cessing. When the definition block is a list of definition items. These items are parsed and extracted (i.e removed from
the docstring) with the help of the extract_items() and a DefintionItem (or a subclass). The list of items
that is returned holds all the information to produce a sequence of sphinx friendly rst.

After collecting the information in the section the refactoring method is ready to produce the updated rst and return a
list of lines to the dispatching method so that they can be re-inserted in the docstring.

3.5 Section components

Each section is composed into a number of components these components are described below.

3.5.1 Section header

The start of the section is designated with the section header, which is a standard rst header. The underline is however
restricted to using only - or =:

Section

and:

Section
=======

Each section header is followed by a section definition block which can be either a list of items or one or more
definition items. In general, The number and format of these items depends on the type of section that is currently
parsed.

3.5.2 Definition list

Two of the most common formats are described

bellow:

The standard definition item format is based on the item of a variation of the definition list item as it defined in
restructured text

+---+
| term [" : " classifier [" or " classifier]] |
+--+--+---+

| definition |
| (body elements)+ |
+--+

where <term> is the single word (e.g. my_field) and <definition> is a indented block of rst code. The item
header can optionally include the <classifier> attribute. This type of item is commonly used to describe class
attributes and function arguments. In this documentation we will refer to this format as variable item to avoid confusion
with sphinx directives.

A similar definition item format is the method item where the item header is composed of a function signature:

+------------------------------+
| term "(" [classifier] ")" |
+--+---------------------------+---+

| definition |

3.5. Section components 11

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#sections

RefactorDoc Documentation, Release 0.2

| (body elements)+ |
+-------------------------------+

This item is commonly used to describe provided functions (or methods) and thus is referred to as the method item.
The <classifier> in this case is a list of arguments as it appears in the signature and <definition> the method
summary (one sentence). All method fields should be separated by a single empty line.

3.5.3 Paragraph

Instead of a list of items the section can contain a paragraph:

+-------------------------+
| definition |
| (body elements)+ |
+-------------------------+

This type of field is used for information sections like Notes.

Note: Currently the <paragraph> is a single unindented block with no empty lines. However, this will probably
should change in future versions of RefactorDoc.

3.6 Building your own suite

While the default refactoring suite is enough for most cases. The user might need to extent the section repertoire,
process other object types, allow more freedom in defining the definition list or restrict the docstring style to improve
consinstancy through his code.

Warning: All the methods below require to change the refactordoc code and even thought the changes might be
small it is not considered the best way since updating refactordoc becomes non-trivial. Future version will remove
this shortcoming.

3.7 Adding sections

New sections to be refactored can be simply added to the headers dictionary when an appropriate refactoring
method exists. For example in the default suite that is shipped with refactordoc the FunctionDoc class sets the
Returns Raises and Yields section to use the _refactor_as_item_list method in the class:

if headers is None:
headers = {'Returns': 'as_item_list', 'Arguments': 'arguments',

'Parameters': 'arguments', 'Raises': 'as_item_list',
'Yields': 'as_item_list', 'Notes':'notes'}

When such a method does not

exist then the user has to augment the related class with that will parse and extract the section definition block(s) and
return the refactored lines as a list of strings to replace the section in the docstring. The signature of the method should
be _header_<name>(self, header)

Where <name> is the value in the headers that corresponds to the header string that is found in the docstring.

12 Chapter 3. Contents

RefactorDoc Documentation, Release 0.2

Note: More to come

3.8 Library Reference

The extension is separated into three main parts.

3.8.1 Sphinx extension

3.8.2 Refactor classes

class refactordoc.base_doc.BaseDoc(lines, headers=None)
Base abstract docstring refactoring class.

The class’ main purpose is to parse the docstring and find the sections that need to be refactored. Subclasses
should provide the methods responsible for refactoring the sections.

docstring = list
A list of strings (lines) that holds docstrings

index = int
The current zero-based line number of the docstring that is currently processed.

headers = dict
The sections that the class will refactor. Each entry in the dictionary should have as key the name of the
section in the form that it appears in the docstrings. The value should be the postfix of the method, in the
subclasses, that is responsible for refactoring (e.g. {‘Methods’: ‘method’}).

BaseDoc also provides a number of methods that operate on the docstring to help with the refactoring. This is
necessary because the docstring has to change inplace and thus it is better to live the docstring manipulation to
the class methods instead of accessing the lines directly.

bookmark()
append the current index to the end of the list of bookmarks.

docstring
Get the docstring lines.

eod
End of docstring.

extract_items(item_class=None)
Extract the definition items from a docstring.

Parse the items in the description of a section into items of the provided class time. Given a Definition-
Item or a subclass defined by the item_class parameter. Staring from the current index position, the
method checks if in the next two lines a valid header exists. If successful, then the lines that belong to
the item description block (i.e. header + definition) are popped out from the docstring and passed to the
item_class parser and create an instance of item_class.

The process is repeated until there is no compatible item_class found or we run out of docstring. Then
the method returns a list of item_class instances.

The exit conditions allow for two valid section item layouts:

1.No lines between items:

3.8. Library Reference 13

RefactorDoc Documentation, Release 0.2

<header1>
<description1>

<more description>
<header2>

<description2>

2.One line between items:

<header1>
<description1>

<more description>

<header2>
<description2>

Parameters item_class (DefinitionItem) – A DefinitionItem or a subclass. This argu-
ment is used to check if a line in the docstring is a valid item and to parse the individual list
items in the section. When None (default) the base DefinitionItem class is used.

Returns parameters (list) – List of the parsed item instances of item_class type.

get_next_block()
Get the next item block from the docstring.

The method reads the next item block in the docstring. The first line is assumed to be the DefinitionItem
header and the following lines to belong to the definition:

<header line>
<definition>

The end of the field is designated by a line with the same indent as the field header or two empty lines are
found in sequence.

get_next_paragraph()
Get the next paragraph designated by an empty line.

goto_bookmark(bookmark_index=-1)
Move to bookmark.

Move the current index to the docstring line given my the self.bookmarks[bookmark_index]
and remove it from the bookmark list. Default value will pop the last entry.

Returns bookmark (int)

insert_and_move(lines, index)
Insert refactored lines and move current index to the end.

insert_lines(lines, index)
Insert refactored lines

Parameters

• new_lines (list) – The list of lines to insert

• index (int) – Index to start the insertion

is_section()
Check if the current line defines a section.

14 Chapter 3. Contents

http://docs.python.org/library/functions.html#list
http://docs.python.org/library/functions.html#int

RefactorDoc Documentation, Release 0.2

parse()
Parse the docstring.

The docstring is parsed for sections. If a section is found then the corresponding refactoring method is
called.

peek(ahead=0)
Peek ahead a number of lines

The function retrieves the line that is ahead of the current index. If the index is at the end of the list then it
returns an empty string.

Parameters ahead (int) – The number of lines to look ahead.

pop(index=None)
Pop a line from the dostrings.

read()
Return the next line and advance the index.

remove_if_empty(index=None)
Remove the line from the docstring if it is empty.

remove_lines(index, count=1)
Removes the lines from the docstring

seek_to_next_non_empty_line()
Goto the next non_empty line.

class refactordoc.function_doc.FunctionDoc(lines, headers=None)
Docstring refactoring for functions

The class provides the following refactoring methods.

Method Description
_refactor_arguments(self,
header)

Refactor the Arguments and Parameters section to sphinx
friendly format.

_refactor_as_items_list(self,
header)

Refactor the Returns, Raises and Yields sections to sphinx
friendly format.

_refactor_notes(self, header) Refactor the note section to use the rst .. note
directive.

_refactor_arguments(header)
Refactor the argument section to sphinx friendly format.

Parameters header (unused) – This parameter is ignored in thi method.

_refactor_as_item_list(header)
Refactor the a section to sphinx friendly item list.

Parameters header (str) – The header name that is used for the fields (i.e. :<header>:).

_refactor_notes(header)
Refactor the notes section to sphinx friendly format.

Parameters header (unused) – This parameter is ignored in this method.

class refactordoc.class_doc.ClassDoc(lines, headers=None)
Docstring refactoring for classes.

The class provides the following refactoring methods.

3.8. Library Reference 15

http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#str

RefactorDoc Documentation, Release 0.2

Method Description
_refactor_attributes(self,
header)

Refactor the attributes section to sphinx friendly format.

_refactor_methods(self, header) Refactor the methods section to sphinx friendly format.
_refactor_notes(self, header) Refactor the note section to use the rst .. note

directive.

_get_column_lengths(items)
Helper function to estimate the column widths for the refactoring of the Methods section.

The method finds the index of the item that has the largest function name (i.e. self.term) and the largest
signature. If the indexes are not the same then checks to see which of the two items have the largest string
sum (i.e. self.term + self.signature).

_refactor_attributes(header)
Refactor the attributes section to sphinx friendly format.

_refactor_methods(header)
Refactor the methods section to sphinx friendly format.

_refactor_notes(header)
Refactor the note section to use the rst .. note directive.

3.8.3 Definition items

class refactordoc.definition_items.ArgumentItem
A definition item for function argument sections.

to_rst()
Render ArgumentItem in sphinx friendly rst using the :param: role.

Example

>>> item = ArgumentItem('indent', 'int',
... ['The indent to use for the description block.',

''
'This is the second paragraph of the argument definition.'])

>>> item.to_rst()
:param indent:

The indent to use for the description block.

This is the second paragraph of the argument definition.
:type indent: int

Note: There is no new line added at the last line of the to_rst() method.

class refactordoc.definition_items.AttributeItem
Definition that renders the rst output using the attribute directive.

to_rst()
Return the attribute info using the attribute sphinx markup.

16 Chapter 3. Contents

RefactorDoc Documentation, Release 0.2

Examples

>>> item = AttributeItem('indent', 'int',
... ['The indent to use for the description block.'])
>>> item.to_rst()
.. attribute:: indent

:annotation: = int

The indent to use for the description block
>>>

>>> item = AttributeItem('indent', '',
... ['The indent to use for the description block.'])
>>> item.to_rst()
.. attribute:: indent

The indent to use for the description block
>>>

Note: An empty line is added at the end of the list of strings so that the results can be concatenated
directly and rendered properly by sphinx.

class refactordoc.definition_items.DefinitionItem
A docstring definition item

Syntax diagram:

+---+
| term [" : " classifier [" or " classifier]] |
+--+--+---+

| definition |
| (body elements)+ |
+--+

The Definition class is based on the nametuple class and is responsible to check, parse and refactor a docstring
definition item into sphinx friendly rst.

term = str
The term usually reflects the name of a parameter or an attribute.

classifier: str The classifier of the definition. Commonly used to reflect the type of an argument or the signature
of a function.

Note: Currently only one classifier is supported.

definition [list] The list of strings that holds the description the definition item.

Note: A Definition item is based on the item of a section definition list as it defined in restructured text
(_http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#sections).

classmethod is_definition(line)
Check if the line is describing a definition item.

3.8. Library Reference 17

RefactorDoc Documentation, Release 0.2

The method is used to check that a line is following the expected format for the term and classifier at-
tributes.

The expected format is:

+---+
| term [" : " classifier [" or " classifier]] |
+---+

Subclasses can subclass to restrict or expand this format.

classmethod parse(lines)
Parse a definition item from a set of lines.

The class method parses the definition list item from the list of docstring lines and produces a Definition-
Item with the term, classifier and the definition.

Note: The global indention in the definition lines is striped

The term definition is assumed to be in one of the following formats:

term
Definition.

term
Definition, paragraph 1.

Definition, paragraph 2.

term : classifier
Definition.

lines docstring lines of the definition without any empty lines before or after.

Returns definition (DefinitionItem)

to_rst(**kwards)
Outputs the Definition in sphinx friendly rst.

The method renders the definition into a list of lines that follow the rst markup. The default behaviour is
to render the definition as an sphinx definition item:

<term>

(<classifier>) --
<definition>

Subclasses will usually override the method to provide custom made behaviour. However the signature of
the method should hold only keyword arguments which have default values. The keyword arguments can
be used to pass addition rendering information to subclasses.

Returns lines (list) – A list of string lines rendered in rst.

Example

18 Chapter 3. Contents

RefactorDoc Documentation, Release 0.2

>>> item = DefinitionItem('lines', 'list',
['A list of string lines rendered in rst.'])

>>> item.to_rst()
lines

(list) --
A list of string lines rendered in rst.

Note: An empty line is added at the end of the list of strings so that the results can be concatenated
directly and rendered properly by sphinx.

class refactordoc.definition_items.ListItem
A definition item that is rendered as an ordered/unordered list

to_rst(prefix=None)
Outputs ListItem in rst using as items in an list.

Parameters prefix (str) – The prefix to use. For example if the item is part of a numbered
list then prefix=’-’.

Example

>>> item = ListItem('indent', 'int',
... ['The indent to use for the description block.'])
>>> item.to_rst(prefix='-')
- **indent** (`int`) --
The indent to use for the description block.

>>> item = ListItem('indent', 'int',
... ['The indent to use for'

'the description block.'])
>>> item.to_rst(prefix='-')
- **indent** (`int`) --
The indent to use for
the description block.

Note: An empty line is added at the end of the list of strings so that the results can be concatenated
directly and rendered properly by sphinx.

class refactordoc.definition_items.MethodItem
A TableLineItem subclass to parse and render class methods.

classmethod is_definition(line)
Check if the definition header is a function signature.

classmethod parse(lines)
Parse a method definition item from a set of lines.

The class method parses the method signature and definition from the list of docstring lines and produces
a MethodItem where the term is the method name and the classifier is arguments

Note: The global indention in the definition lines is striped

3.8. Library Reference 19

http://docs.python.org/library/functions.html#str

RefactorDoc Documentation, Release 0.2

The method definition item is assumed to be as follows:

+------------------------------+
| term "(" [classifier] ")" |
+--+---------------------------+---+

| definition |
| (body elements)+ |
+--------------------- ---------+

Parameters lines – docstring lines of the method definition item without any empty lines
before or after.

Returns definition (MethodItem)

to_rst(columns=(0, 0))
Outputs definition in rst as a line in a table.

Parameters columns (tuple) – The two item tuple of column widths for the :meth: role
column and the definition (i.e. summary) of the MethodItem

Note: The strings attributes are clipped to the column width.

Example

>>> item = MethodItem('function', 'arg1, arg2',
... ['This is the best function ever.'])
>>> item.to_rst(columns=(40, 20))
:meth:`function <function(arg1, arg2)>` This is the best fun

class refactordoc.definition_items.TableLineItem
A Definition Item that represents a table line.

to_rst(columns=(0, 0, 0))
Outputs definition in rst as a line in a table.

Parameters columns (tuple) – The three item tuple of column widths for the term, classifier
and definition fields of the TableLineItem. When the column width is 0 then the field

Note:

•The strings attributes are clipped to the column width.

Example

>>> item = TableLineItem('function(arg1, arg2)', '',
... ['This is the best function ever.'])
>>> item.to_rst(columns=(22, 0, 20))
function(arg1, arg2) This is the best fun

refactordoc.definition_items.max_attribute_index(items, attr)
Find the index of the attribute with the maximum length in a list of DefinitionItems.

Parameters

20 Chapter 3. Contents

http://docs.python.org/library/functions.html#tuple
http://docs.python.org/library/functions.html#tuple

RefactorDoc Documentation, Release 0.2

• items (list) – The list of the DefinitionItems (or subclasses).

• attr (str) – Attribute to look at.

refactordoc.definition_items.max_attribute_length(items, attr)
Find the max length of the attribute in a list of DefinitionItems.

Parameters

• items (list) – The list of the DefinitionItem instances (or subclasses).

• attr (str) – Attribute to look at.

3.8.4 Line functions

refactordoc.line_functions.add_indent(lines, indent=4)
Add spaces to indent a list of lines.

Parameters

• lines (list) – The list of strings to indent.

• indent (int) – The number of spaces to add.

Returns lines (list) – The indented strings (lines).

Note: Empty strings are not changed.

refactordoc.line_functions.fix_backspace(word)
Replace \ with \\ so that it will printed properly in the documentation.

refactordoc.line_functions.fix_star(word)
Replace * with * so that is will be parse properly by docutils.

refactordoc.line_functions.fix_trailing_underscore(word)
Replace the trailing _ with _ so that it will printed properly in the documentation.

refactordoc.line_functions.get_indent(line)
Return the indent portion of the line.

refactordoc.line_functions.remove_indent(lines)
Remove all indentation from the lines.

Returns result (list) – A new list of left striped strings.

refactordoc.line_functions.replace_at(word, line, index)
Replace the text in-line.

The text in line is replaced (not inserted) with the word. The replacement starts at the provided index. The result
is cliped to the input length

Parameters

• word (str) – The text to copy into the line.

• line (str) – The line where the copy takes place.

• index (int) – The index to start coping.

Returns result (str) – line of text with the text replaced.

refactordoc.line_functions.trim_indent(lines)
Trim global intention level from lines.

3.8. Library Reference 21

http://docs.python.org/library/functions.html#list
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#list
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#list
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#int

RefactorDoc Documentation, Release 0.2

3.9 Authors

Ioannis Tziakos is the main developer and maintainer of the refactor_doc sphinx extension.

3.9.1 Historical notes:

The refactor_doc extention started while working on the Enaml project with Chris Colbert, Robert Kern, Corran
Webster, Tim Diller, and David Wyde at Enthought.

Many people at Enthought have provided feedback, given suggestions and fixes.

3.10 Todos

Enhancements:

• Add error or warning messages when formating is wrong.

• Add conf.py configuration variable to define objects and the corresponding refactoring class

• Move DefinitionItem and subclasses to use templates similar to AttributeItem

• Allow DefinitionItem templates to be described in jinja2

3.11 Change Log

3.11.1 Version 0.3.1

23/05/2014

• Fix support and tests on Python 2.6 (#8)

3.11.2 Version 0.3.0

23/05/2014

• Support for Python 2.6 to 3.4 (#3, #4)

• Tests are run on TravisCI for all supported Python versions on Linux (#4)

• A setup.py file has been added to allow installable releases (#5)

3.11.3 Version 0.2

31/01/2012

• First of the documentation and rename to refactordoc

• Removed depedancy to docscrape.py

• Refactordoc is now a valid sphinx extention

• Factor out boilerplate code from refactoring methods to class methods.

• Factored out DefinitionItem class.

22 Chapter 3. Contents

RefactorDoc Documentation, Release 0.2

• Better test coverage.

• Code and Docstring cleanup.

3.11.4 Early Versions

26/10/2011

An early copy of the refactor_doc‘ can be found in the enaml documentation source directory. The module is named
enamldoc and uses the Reader class that is in the docscrape.py file of the numpydoc package.

3.12 License

This software is OSI Certified Open Source Software. OSI Certified is a certification mark of the Open Source
Initiative.

Copyright (c) 2006, Enthought, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of Enthought, Inc. nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

3.12. License 23

RefactorDoc Documentation, Release 0.2

24 Chapter 3. Contents

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

25

RefactorDoc Documentation, Release 0.2

26 Chapter 4. Indices and tables

Python Module Index

r
refactordoc, 13
refactordoc.base_doc, 13
refactordoc.class_doc, 15
refactordoc.definition_items, 16
refactordoc.function_doc, 15
refactordoc.line_functions, 21

27

RefactorDoc Documentation, Release 0.2

28 Python Module Index

Index

Symbols
_get_column_lengths() (refactordoc.class_doc.ClassDoc

method), 16
_refactor_arguments() (refactor-

doc.function_doc.FunctionDoc method),
15

_refactor_as_item_list() (refactor-
doc.function_doc.FunctionDoc method),
15

_refactor_attributes() (refactordoc.class_doc.ClassDoc
method), 16

_refactor_methods() (refactordoc.class_doc.ClassDoc
method), 16

_refactor_notes() (refactordoc.class_doc.ClassDoc
method), 16

_refactor_notes() (refactordoc.function_doc.FunctionDoc
method), 15

A
add_indent() (in module refactordoc.line_functions), 21
ArgumentItem (class in refactordoc.definition_items), 16
AttributeItem (class in refactordoc.definition_items), 16

B
BaseDoc (class in refactordoc.base_doc), 13
bookmark() (refactordoc.base_doc.BaseDoc method), 13

C
ClassDoc (class in refactordoc.class_doc), 15

D
DefinitionItem (class in refactordoc.definition_items), 17
docstring (BaseDoc attribute), 9
docstring (refactordoc.base_doc.BaseDoc attribute), 13

E
eod (refactordoc.base_doc.BaseDoc attribute), 13
extract_items() (refactordoc.base_doc.BaseDoc method),

13

F
fix_backspace() (in module refactordoc.line_functions),

21
fix_star() (in module refactordoc.line_functions), 21
fix_trailing_underscore() (in module refactor-

doc.line_functions), 21
FunctionDoc (class in refactordoc.function_doc), 15

G
get_indent() (in module refactordoc.line_functions), 21
get_next_block() (refactordoc.base_doc.BaseDoc

method), 14
get_next_paragraph() (refactordoc.base_doc.BaseDoc

method), 14
goto_bookmark() (refactordoc.base_doc.BaseDoc

method), 14

H
headers (BaseDoc attribute), 9
headers (refactordoc.base_doc.BaseDoc attribute), 13

I
index (BaseDoc attribute), 9
index (refactordoc.base_doc.BaseDoc attribute), 13
insert_and_move() (refactordoc.base_doc.BaseDoc

method), 14
insert_lines() (refactordoc.base_doc.BaseDoc method),

14
is_definition() (refactor-

doc.definition_items.DefinitionItem class
method), 17

is_definition() (refactordoc.definition_items.MethodItem
class method), 19

is_section() (refactordoc.base_doc.BaseDoc method), 14

L
ListItem (class in refactordoc.definition_items), 19

M
max_attribute_index() (in module refactor-

doc.definition_items), 20

29

RefactorDoc Documentation, Release 0.2

max_attribute_length() (in module refactor-
doc.definition_items), 21

MethodItem (class in refactordoc.definition_items), 19

P
parse() (refactordoc.base_doc.BaseDoc method), 14
parse() (refactordoc.definition_items.DefinitionItem class

method), 18
parse() (refactordoc.definition_items.MethodItem class

method), 19
peek() (refactordoc.base_doc.BaseDoc method), 15
pop() (refactordoc.base_doc.BaseDoc method), 15

R
read() (refactordoc.base_doc.BaseDoc method), 15
refactordoc (module), 13
refactordoc.base_doc (module), 13
refactordoc.class_doc (module), 15
refactordoc.definition_items (module), 16
refactordoc.function_doc (module), 15
refactordoc.line_functions (module), 21
remove_if_empty() (refactordoc.base_doc.BaseDoc

method), 15
remove_indent() (in module refactordoc.line_functions),

21
remove_lines() (refactordoc.base_doc.BaseDoc method),

15
replace_at() (in module refactordoc.line_functions), 21

S
seek_to_next_non_empty_line() (refactor-

doc.base_doc.BaseDoc method), 15

T
TableLineItem (class in refactordoc.definition_items), 20
term (refactordoc.definition_items.DefinitionItem at-

tribute), 17
to_rst() (refactordoc.definition_items.ArgumentItem

method), 16
to_rst() (refactordoc.definition_items.AttributeItem

method), 16
to_rst() (refactordoc.definition_items.DefinitionItem

method), 18
to_rst() (refactordoc.definition_items.ListItem method),

19
to_rst() (refactordoc.definition_items.MethodItem

method), 20
to_rst() (refactordoc.definition_items.TableLineItem

method), 20
trim_indent() (in module refactordoc.line_functions), 21

30 Index

	Repository
	Installation
	Contents
	Default refactoring
	Usage rules
	Examples
	Architecture
	Section components
	Building your own suite
	Adding sections
	Library Reference
	Authors
	Todos
	Change Log
	License

	Indices and tables
	Python Module Index

